Evaluation of Sorghum [Sorghum bicolor (L.)] Reference Genes in Various Tissues and under Abiotic Stress Conditions for Quantitative Real-Time PCR Data Normalization

نویسندگان

  • Palakolanu Sudhakar Reddy
  • Dumbala Srinivas Reddy
  • Kaliamoorthy Sivasakthi
  • Pooja Bhatnagar-Mathur
  • Vincent Vadez
  • Kiran K. Sharma
چکیده

Accurate and reliable gene expression data from qPCR depends on stable reference gene expression for potential gene functional analyses. In this study, 15 reference genes were selected and analyzed in various sample sets including abiotic stress treatments (salt, cold, water stress, heat, and abscisic acid) and tissues (leaves, roots, seedlings, panicle, and mature seeds). Statistical tools, including geNorm, NormFinder and RefFinder, were utilized to assess the suitability of reference genes based on their stability rankings for various sample groups. For abiotic stress, PP2A and CYP were identified as the most stable genes. In contrast, EIF4α was the most stable in the tissue sample set, followed by PP2A; PP2A was the most stable in all the sample set, followed by EIF4α. GAPDH, and UBC1 were the least stably expressed in the tissue and all the sample sets. These results also indicated that the use of two candidate reference genes would be sufficient for the optimization of normalization studies. To further verify the suitability of these genes for use as reference genes, SbHSF5 and SbHSF13 gene expression levels were normalized using the most and least stable sorghum reference genes in root and water stressed-leaf tissues of five sorghum varieties. This is the first systematic study of the selection of the most stable reference genes for qPCR-related assays in Sorghum bicolor that will potentially benefit future gene expression studies in sorghum and other closely related species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reference gene identification for reliable normalisation of quantitative RT-PCR data in Setaria viridis

Background Quantitative real-time polymerase chain reaction (RT-qPCR) is the key platform for the quantitative analysis of gene expression in a wide range of experimental systems and conditions. However, the accuracy and reproducibility of gene expression quantification via RT-qPCR is entirely dependent on the identification of reliable reference genes for data normalisation. Green foxtail (Set...

متن کامل

Genome-wide Scanning and Characterization of Sorghum bicolor L. Heat Shock Transcription Factors

A genome-wide scanning of Sorghum bicolor resulted in the identification of 25 SbHsf genes. Phylogenetic analysis shows the ortholog genes that are clustered with only rice, representing a common ancestor. Promoter analysis revealed the identification of different cis-acting elements that are responsible for abiotic as well as biotic stresses. Hsf domains like DBD, NLS, NES, and AHA have been a...

متن کامل

Evaluation of grain sorghum (Sorghum bicolor L.) lines/cultivars under salinity stress using tolerance indices

Selecting and cultivating the crops/varieties that can tolerate water salinity is potentially animportant strategy to save fresh water resources and maximize the crop yield in salt affected areas.To evaluate the responses of 36 sorghum lines and cultivars to salinity stress, two fieldexperiments were conducted in non-stress (EC=2 dS/m) and salinity stress conditions (EC=12dS/m) using randomized...

متن کامل

Evaluation of yield of promising dual purpose grain- forage sorghum lines (Sorghum bicolor L. Moench) using drought tolerance indices

To evaluate and select the promising lines of dual purpose grain-forage sorghum under drought stress conditions, a field experiment assplit plot arrangements in randomized complete block design with three replications was carried out atresearch field station of Seed and Plant Improvement Research Institute, Karaj, Iran, in 2014 and 2015 growing seasons. Irrigation levels (60 mm, 120 mm and 180 ...

متن کامل

Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance

Sorghum [Sorghum bicolor (L.) Moench] grain yield is severely affected by abiotic and biotic stresses during post-flowering stages, which has been aggravated by climate change. New parental lines having genes for various biotic and abiotic stress tolerances have the potential to mitigate this negative effect. Field studies were conducted under irrigated and dryland conditions with 128 exotic ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in plant science

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016